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ABSTRACT 

Long-term diet patterns based on stable isotope analysis may be helpful to 

understand changes in food selection of black bears (Ursus americanus) over time and 

guide management programs to reduce human-bear conflicts. An enriched stable carbon 

isotope signature indicates an anthropogenic food source in the diet and an enriched 

nitrogen signature indicates a higher tropic level for a species.  I examined longitudinal 

feeding patterns from 117 hair samples of black bears live captured in Great Smoky 

Mountains National Park during 1980–2001 using stable carbon and nitrogen isotope 

analysis from hair samples. I developed a set of a priori models to examine if sex, age 

class, year, weight class, total hard mast index, white oak index (Quercus spp.), red oak 

index (Quercus spp.), nuisance status and hog harvest (Sus scrofa) affected stable isotope 

signatures. I used model averaging and an estimator of the unconditional variance was 

used to account for model uncertainty. The δ[delta]
13

C signatures differed by weight class 

with above average weight, (ß[Beta] = 0.76‰; 95% CI = 0.28 to 1.23) and average 

weight (ß[Beta] = 0.42‰; CI = 0.06 to 0.78) showing enriched values compared to below 

average bears. Bears had enriched δ[delta]
15

N signatures in years with low white oak 

mast production (ß[beta] = -0.19, CI = -0.34 to -0.03) and depleted when white oak hard 

mast was abundant.  Sub adult bears had enriched δ[delta]
15

N signatures compared to 

adult and older adult bears. Variation of nitrogen values was small during 1980–1991 ( x

= 2.57, SD = 0.28) but increased substantially during 1992–2000 ( x  = 2.29, SD = 0.71) 

when there was substantial variation in hard mast production.  Bears in better physical 

condition appear more likely to access anthropogenic food sources. In years of low white 



 

ix 
 

oak acorn production, the larger bears and sub adult bears are more likely to turn to 

alternative food sources.  The long term variation detected in this study is important in 

identifying which bears are potentially more likely to seek out the anthropogenic food 

sources when changes occur in availability of natural foods.  
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CHAPTER I 

INTRODUCTION 

HISTORY 

Bear management strategies have varied substantially since the establishment of 

the U.S. National Park System in 1872.  In the early decades of the national parks, it was 

common to hold regular feedings and chain bears to posts to attract human visitors 

(Marsh 1972).  Bears were intentionally fed garbage so they could be viewed by the 

public (Zardus and Parsons 1980, Stiver 1991).  Great Smoky Mountain National Park 

(GSMNP) was established in 1934.  Throughout the history of GSMNP, interactions 

between American black bears (Ursus americanus) and humans have occurred 

frequently.  Human food and garbage were readily available to black bears and visitors 

routinely fed bears, leading to increased nuisance bear activity (Singer and Bratton 1980).  

As encounters with bears increased in many of the parks during the 1950s and 1960s, the 

National Park Service (NPS) implemented regulations prohibiting feeding of wildlife (Ise 

1961, LaFollette 1974).  Despite adoption of these regulations, incidents between bears 

and humans in national parks continue partially because of low visitor compliance, 

resulting in intentional feeding (Singer and Bratton 1980), improper food storage 

(National Park Service 2002), and an increase in black bear abundance and human 

visitation to the park (Singer and Bratton 1980). 
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Since the establishment of GSMNP, visitation has steadily increased.  From 1953 

to 1973, visitation increased on average 7 % per year (Singer and Bratton 1980).  

Approximately 10 million people per year visit GSMNP (National Park Service 2002).  

The black bear population also has steadily increased since the national park’s 

establishment.  During the late 1970s, the number of black bears in the national park was 

estimated around 500–700, but increased during the late 1980s, and peaked to >2,000 in 

the late 1990s (Coley 1995, Clark et al. 2005, F.T. van Manen, U.S. Geological Survey, 

personal communication).  Black bears are mobile, curious, intelligent, and adaptable 

(Pelton 1982).  Black bears are opportunistic omnivores and some bears may change their 

behavior to take advantage of easily obtained food sources.  Those bears may become 

conditioned to anthropogenic foods and, consequently, habituated to humans (Herrero 

1985).  These behavioral traits, along with an increasing bear population and a large 

number of visitors, have lead to an increase of bear-human encounters.  From 1964 to 

1976, there were 1,028 reports of black bear incidents in GSMNP (86/year; Singer and 

Bratton 1980), whereas 1,414 nuisance bear incidents were reported from 1990 to 1998 

(177/year; Clark et al. 2002).   

Management practices can be directed to avoid human injuries from bear-human 

interactions.  The mission of NPS is to preserve the historic wildlife, biological diversity 

and provide opportunities for the public to view the natural systems of the park (United 

States Congress 1916).  Therefore, the goal of current nuisance bear management in 

GSMNP is to minimize bear-human conflicts while allowing wild bears to live naturally 

(National Park Service 2002).  The 2002 Black Bear Management Guidelines emphasized 
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the importance of maintaining natural bear behavior (National Park Service 2002).   

Visitors must store food properly and dispose of trash in bear-proof dumpsters to help 

prevent bear habituation to anthropogenic food sources.  The current Black Bear 

Management Guidelines require that the NPS wildlife biologist evaluate each situation on 

a case by case basis.  Some options that can and are implemented include monitoring of 

bear activity, posting warning signs for visitors, closing areas to recreational use, aversive 

conditioning, relocation, and euthanasia (National Park Service 2002).  Many factors can 

cause black bears to seek out anthropogenic food sources; these factors are known and 

actions have been taken to curtail nuisance activity.  However, a better understanding of 

the biological variables that cause some bears to seek out anthropogenic food sources 

would be helpful to managers.  Some of these factors may include physiological 

mechanisms, i.e., growth demand, competition, and environmental mechanisms, i.e., 

variability in food sources.  With traditional wildlife nutrition studies, scat analysis has 

been used to determine the diet of a species (Beeman and Pelton 1980, Eagle and Pelton 

1983, Seibert and Pelton 1994). Many dietary studies are conducted over a few years, 

which only provide a snapshot of the animals’ foraging patterns and can miss variation 

that occurs within the environment.  A long term-study of diet can examine the dietary 

trends of a population in connection with long-term environmental patterns and natural 

life history cycles.   

STABLE ISOTOPES IN WILDLIFE STUDIES 

Stable isotope analysis can be used to differentiate the relative abundance of 

animal and plant matter and diets consisting of anthropogenic foods compared with 
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natural food sources in individual animals (Robbins et al. 2004).  Stable isotope analysis 

also allows quantitative analysis of trophic levels within a community (Crawford et al. 

2008).  The longitudinal dietary patterns of specific groups (e.g., sex, age, body mass) 

can be assessed (Greenleaf 2005).  As part of an ongoing, long-term research project on 

black bears in GSMNP that started in 1969, hair samples have been collected from 

captured bears (Pelton and van Manen 1996).  Those hair samples could provide valuable 

longitudinal information on assimilated diets and food habits of black bears (Robbins et 

al. 2004).  Importantly, by using hairs collected from live captured animals, individual 

characteristics of each animal can be correlated with the sample analyzed.   

OBJECTIVES 

I examined longitudinal feeding patterns of black bears live-captured in Great 

Smoky Mountains National Park (GSMNP) during 1980–2001 using stable carbon and 

nitrogen isotope analysis of hair samples.  I used the ratio of stable carbon and nitrogen 

isotopes in bear hair to examine trophic levels and the use of anthropogenic foods by 

black bears. I wanted to investigate if anthropogenic food exploitation and increased 

protein intake were associated with age, sex, year, nuisance status, total hard mast index, 

white oak index, red oak index or hog kill. The use of long-term diet patterns based on 

stable isotope analysis may be helpful to understand changes in food selection of black 

bears over time and guide management programs to reduce human-bear conflicts.   

Specifically, I wanted to test the following hypotheses: 

1) The availability of hard mast crops can affect the amount of anthropogenic 

food in the diet of black bears in the Southeast United States.  
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2) Black bears that are subsequently captured as nuisance bears will have 

enriched δ
13

C signatures (more anthropogenic food in diet) compared with 

bears not subsequently captured as nuisance bears.  

3) Black bears in GSMNP will have enriched δ
13

C signatures in the later years 

of the study compared with depleted signatures in the earlier years of the 

study as human visitation in the park and black bear abundance increases. 

4) Adult male black bears in better condition are more likely than other sex 

and age groups to have access to anthropogenic food sources because of 

their larger home ranges. 

5) The number of hogs killed by park personnel as part of the wild hog 

management efforts is reflective of the amount of nitrogen in black bear 

diet, i.e., as the number of hogs killed increases; δ
15

N levels in the diet will 

also increase. 
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CHAPTER II 

LITERATURE REVIEW 

ANTHROPOGENIC FOOD EXPLOITATION 

A combination of factors can affect bear exploitation of anthropogenic food 

sources, such as high visitor density, high bear density, and poor natural food crops 

(Singer and Bratton 1980).  Stiver (1991) found that mostly young females and subadult 

males accessed anthropogenic food sources.  Food-conditioned bears were primarily a 

problem in campgrounds, picnic areas and other front-country sites (Stiver 1991).  

However, Hatch and van Manen (2007) suggested that older males captured in the 

backcountry may also access anthropogenic food sources.  Adult male black bears may 

have regular access to anthropogenic food sources due to their larger home ranges 

compared with females and sub adults or there may be an increase in exploitation of 

anthropogenic food sources when bear densities increase and mast production fails. Clark 

et al. (2005) found that availability of hard mast was related to changes in population 

growth (λ) of black bears in GSMNP.  Therefore, changes in population density may be 

associated with hard mast availability, which, in turn, may influence incidence of 

nuisance activity by bears (Noyce and Garshelis 1997) and increase exploitation of 

human food sources. 
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FEEDING ECOLOGY 

Numerous black bear research projects have been conducted in GSMNP regarding 

mast production (Pelton 1989, Inman and Pelton 2002, Clark et al. 2005), population 

growth (Coley 1995, McLean and Pelton 1994), reproduction (Eiler et al. 1989, 

Pozzanghera 1990), visitor information and nuisance bear activity (Singer and Bratton 

1980, Tate and Pelton 1983, Clark et al. 2003).  Nutritional studies have mostly been 

based on scat collection (Beeman and Pelton 1980, Eagle and Pelton 1983, Seibert and 

Pelton 1994), which only provides information regarding nondigestible foods and not the 

assimilated diet of a species (Pritchard and Robbins 1990, Hewitt and Robbins 1996, 

Robbins et al. 2004).  Thus, these earlier studies using scat analysis often underestimated 

the role of animal matter or anthropogenic foods in the diets of bears. The variation of 

digestive efficiency for bears ranges from 30% for plant matter to >90% for meat 

(Pritchard and Robbins 1990, Hewitt and Robbins 1996).  An additional disadvantage of 

fecal analysis is the inability to correlate nutritional information from individuals with 

unique characteristics (e.g., body condition, reproductive status) unless the animal 

depositing the scat can be identified; this is often difficult because scat is usually 

collected after the animal has left the area (Greenleaf 2005).   

STABLE ISOTOPES 

Stable isotopes are naturally occurring elements that contain an extra neutron and 

occur in parts per thousand (‰) relative to the abundant form of a particular element 

(Robbins et al. 2004).  In the past, radioactive isotopes have been used as tracers in 

metabolic pathways because of their rapid decay rate.  Stable isotopes are different from 
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radioactive isotopes because they do not decay and are incorporated into an organism’s 

tissue (Crawford et al. 2008).  Stable carbon and nitrogen isotopes exhibit natural 

variation in abundance (Karasov and del Rio 2007).  The mass differences between the 

heavy element with the extra neutron and light element cause isotopes to react differently 

in physical and chemical processes called fractionation (Gannes et al. 1998).  Isotopic 

variation within a species can be analyzed from tissue samples such as hair, plasma, or 

bone.  The amount of tissue required for analysis is ≤2 mg (Robbins et al. 2004). 

The common carbon isotope is 
12

C and the heavier isotope is 
13

C.  Carbon 

fractionation in plants can differ because of 3 distinct photosynthetic pathways: C3, C4, 

and Crassulacean acid metabolism (CAM). C4 and CAM plants evolved from C3 plants 

as an adaptation to declining atmospheric C02 levels in the late Miocene. The 

photosynthetic pathways in C4 and CAM plants are adapted for concentrating CO2. CAM 

plants concentrate the CO2 around Rubisco using a dual carboxyaltion pathway that is 

separated temporally in the same tissue compared with a spatial separation in C4 plants 

between the mesophyll cell and bundle sheath cell (Keeley and Rundel 2003). Because of 

this fractionation, the isotopic signature for C3 plants is unique compared with the 

isotopic signature of C4 and CAM plants (Gannes et al. 1998).  The C3 plants are depleted 

in 
13

C (having a more negative delta (δ) value) in relation to an international standard of 

13
C:

12
C and C4 plants are enriched (having a more positive δ value) with 

13
C (Karasov 

and del Rio 2007).  The  notation refers to the difference in abundance of isotopes 

relative to common international standards (Crawford et al. 2008). The standard for 
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carbon is the Vienna Pee Dee Belemnite (VPDB) formation limestone with 
13

C:
12

C of 

0.011237 (Jahren et al. 2006). The δ
13

C values for C3 plants range from -34 to 

approximately -24 
0
/00  with an average of approximately -27.1 

0
/00  (Smith and Epstein 

1971, Gannes et al. 1998, Jahren et al. 2006, Karasov and del Rio 2007, Jahren and Kraft 

2008,  Z. Li, University of Tennessee, personal communication).    

Globally, most plants are C3 plants (Jahren et al. 2006), which is the primitive 

photo-synthetic pathway and includes all native vegetation of GSMNP.  Native C4 plants 

found in GSMNP include: Poaceae; Schizachyrium scoparium, Andropogon gerardii, 

Sorghastrum nutans, Andropogon virginicus, and Cistaceae; Hudsonia tomentosa (United 

States Department of Agriculture 2011). However; these perennial grasses are not known 

to be a part of the American black bear’s natural diet and are found in the same habitat as 

the research bears in this study. The natural diet of the American black bear is almost 

exclusively comprised of C3 plants (Hildebrand et al. 1996).  An exotic C4 plant found in 

GSMNP is Microstegium vimineum, introduced from Japan and is an annual grass that is 

most abundant in the summer and early fall months when the flowers are produced (Plant 

Conservation Alliance 2008). With the abundant energy rich berries and acorns available 

during these months, this sprawling grass is an unlikely food choice of black bears in 

GSMNP. The natural food of black bears in GSMNP consists of berries, acorns, and 

grasses (Beeman and Pelton 1980, Eagle and Pelton 1983, Seibert and Pelton 1994) 

which are C3 plants. Most anthropogenic foods contain high fructose corn syrup or other 

products that are derived from corn (Zea spp) or sugar cane (Saccharum spp), which are 

C4 plants (Smith and Epstein 1971, Jahren et al. 2006).  The δ
13

C for C4 plants ranges 
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from -6 to -19 
0
/00  with an average of approximately -13.1 

0
/00  ( Smith and Epstein 1971, 

DeNiro and Epstein 1978, O’Leary 1988, Jahren et al. 2006, Z. Li, University of 

Tennessee, personal communication).  Stable isotopes of carbon can be used to 

differentiate natural diets, consisting of C3 plants, and diets from anthropogenic sources, 

consisting of C4 plants (Greenleaf 2005), because tissues of animals that consume food 

with C4 plant sources will have a distinctly high δ
13

C value (Jahren et al. 2006).   

As with carbon, stable nitrogen isotopes (
14

N and 
15

N) also undergo fractionation 

as the element is processed via different biochemical pathways.  The fractionation occurs 

during deamination and transamination (DeNiro and Epstein 1981).  Protein enters the 

body and is broken down to amino acids.  These amino acids are taken up by cells in the 

liver and muscle tissue where they are converted to ammonia and proteins.  The lighter 

stable nitrogen isotope, 
14

N is partially removed from the digestive tract and the heavier 

15
N stable isotope is assimilated preferentially into the body’s tissues (biochemical 

fractionation; Greenleaf 2005).  Because of the fractionation, animals at higher trophic 

level will have enriched 
15

N value compared with animals at the lower trophic levels such 

as herbivores and omnivores (Gannes et al. 1998).  Stable nitrogen isotope analysis 

provides a measure of the relative importance of meat in the diets of black bears.  The 

standard for nitrogen is atmospheric nitrogen (AIR; DeNiro and Epstein 1981) because of 

its constant value (0.366%; Junk and Svec 1958). Used in combination with stable carbon 

isotope analysis, the importance of anthropogenic foods, such as human garbage, can be 

evaluated.   
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USE OF STABLE ISOTOPES TO STUDY BEAR FOOD HABITS 

Ratios of stable carbon and nitrogen isotopes have been used to measure feeding 

history in Asiatic black bears (U. thibetanus; Mizukami et al. 2005), American black 

bears (Greenleaf 2005, Hatch and van Manen 2007), brown bears (Hilderbrand et al. 

1999a, 1999b; Felicetti et al. 2003, Fortin et al. 2007) and the extinct cave bear of Europe 

(U. speleaus; Hilderbrand et al. 1996).  In Japan, Mizukami et al. (2005) found that hair 

from rural Asiatic black bears was enriched with δ
15

N and δ
13

C indicative of 

anthropogenic food sources in the diet compared with alpine bears.  Rural bears with 

access to anthropogenic food and cornfields showed high variation in the isotope values 

during different seasons compared with the alpine bears, suggesting a diet of natural 

foods and anthropogenic foods for bears near human areas.  Greenleaf (2005) found that 

stable nitrogen isotope ratios were significantly related to management status of bears in 

Yosemite Valley, California.  Bears that were the most food-conditioned had enriched 

nitrogen values (Greenleaf 2005).  Newsome et al. (2010) was able to detect differences 

in diets consumed by San Joaquin kit Foxes (Vulpes macrotis mutica) in urban and non-

urban areas of Fresno, California.  They found that foxes in urban areas exploited 

anthropogenic food sources by detection of an enriched δ
13

C signature.  In a pilot study, 

Hatch and van Manen (2007) analyzed stable of carbon and nitrogen isotopes in 66 bears 

in the back country at GSMNP and found higher use of anthropogenic foods in larger, 

older male bears.  However, this study was only for 1 year and could not examine effects 

of management changes over time. Therefore, a longitudinal study using stable carbon 

and nitrogen isotope analysis is needed to determine if access to anthropogenic food 
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sources has changed over time and what variables are associated with the changes. Better 

understanding of long term environmental and physiological factors affecting bear use of 

anthropogenic foods could help guide nuisance bear management. The purpose of this 

study is to examine if any trends exist over time for black bears in GSMNP with regard to 

selection of anthropogenic food sources over natural food sources and what the 

mechanisms are that drive those choices. Understanding these long term diet patterns can 

aide managers to understand what may cause black bears to seek out anthropogenic food 

sources.  
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CHAPTER III 

METHODS 

STUDY AREA GENERAL DESCRIPTION 

Great Smoky Mountain National Park is 2,072 km
2
 and is located on the border of 

Tennessee and North Carolina between 35° 26′ and 35° 47′ N latitude and 83° 2′ and 84° 

0′ W longitude.  The park is bordered by the Cherokee National Forest, Tennessee to the 

Southwest, the Pisgah National Forest, North Carolina to the Northeast, and the 

Nantahala National Forest, North Carolina to the south.  The Tennessee side of GSMNP 

includes the counties: Blount, Sevier, and Cocke.  On the North Carolina side of GSMNP 

is Haywood and Swain counties. Land north of the park is privately owned and a single 

ridge is the geographical divide forming the political boundary between Tennessee and 

North Carolina (Stiver 1991).  The Tennessee portion of GSMNP is bordered by private 

land which is developed for vacation homes and the tourism industry. Elevation within 

the park ranges from 270 to 2,024 m. Live-capture of black bears began in 1969 in the 

northwest quadrant (Figure 1) of the park (approximately 330 km
2
).   

TOPOGRAPHY 

 As part of the Unaka mountain range of the Blue Ridge Province, GSMNP is 

located within the southern division of the Appalachian Highlands.  The park is 

characterized by rugged topography of ridges that extend outward from the main ridges 

separated by wide valleys (Fenneman 1938 in, Whittaker 1956).  The range of elevations 
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within the park begins where Abrams Creek enters the Little Tennessee River at 270 m to 

Clingman’s Dome at 2,024 m (Pivorun et al. 2009).  The elevations within the northwest 

quadrant of the park for my study ranged from 318 m to 1,658 m (Laufenberg 2010).  

CLIMATE 

 Because of the wide variation in elevation, aspect, and slope within GSMNP, 

there are several microclimates that exhibit substantial variation (Shanks, 1954).  

Thornthwaite (1948) classified the area as mesothermal per-humid or warm-temperate 

rain forest.  Average annual precipitation varies from 140 at lower elevations to 220 cm 

at higher elevations (Stephens 1969). 

FLORA AND FAUNA 

 Among the eastern forests in North America, Whittaker (1956) classified GSMNP 

with the greatest diversity.  The variation in elevation yields a range of forest 

communities within the park.  Low elevations are characterized by mixed hardwoods 

while the high elevations are characterized by spruce-fir (Picea rubens).  Within the park 

there are over 1,300 flowering plants, 130 tree species, 2,000 fungi, 330 mosses, 230 

lichens and 32 fern species that have been recorded (King and Stupka 1950, Stupka 

1960). Within my study area, the primary vegetation of the hardwoods was composed of 

oaks (Quercus spp.), tulip poplar (Liriodendron tulipifera), red maple (Acer rubrum), 

sweetgum (Liquidambar sturaciflua), yellow buckeye (Aesculus flaca) and dogwood 

(Cornus florida).  The major understory vegetation within my study area was composed 

of rhododendron (Rhododendron maxima), mountain laurel (Kalmia latifolia), 

huckleberry (Gaylussacia spp.), blueberry (Vaccinium spp.) and wild grape (Vitis spp.) 
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(Laufenberg 2010).   There are a recorded 71 mammal species within GSMNP. Four of 

those species were extirpated, 2 were reintroduced and 4 were non-native (Pivorun et al. 

2009). King and Stupka (1950) recorded over 200 bird species, 30 reptile species, 39 

amphibians, and 80 fish species.  

BEAR TRAPPING 

During 1975–2007, field personnel collected 1,835 hair samples from black bears 

in GSMNP, along with information regarding nuisance status, body condition and mass, 

location of capture and release, and reproductive status (M. Pelton, University of 

Tennessee, unpublished data).  Bears were captured using spring-activated, Aldrich foot 

snares; to reduce injuries during capture, a spring from an automobile hood was placed 

on the cable (Johnson and Pelton 1981).  Various chemical immobilization drugs were 

used over the course of the study (Beeman and Pelton 1980, Wathen et al. 1986, van 

Manen 1994, Coley 1995, Clark et al. 2003, 2005, Stiver 1991). All bears captured were 

handled according to animal welfare protocols approved by the University Of Tennessee 

Institutional Animal Care and Use Committee (IACUC #1096).   

HAIR COLLECTION 

Field personnel collected hair samples from captured bears in back-country of the 

northwestern quadrant of GSMNP.  For this project, back-country refers to the locations 

of historic trap lines in GSMNP where bears are not normally associated with human 

visitation. From 1980 through 1988, samples were stored in glass vials or plastic bags.  

Starting in 1988, hair was stored in manila coin envelopes.  All hair samples were stored 

away from light and at room temperature.   
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In the years 2007 and 2008, a reintroduction project of elk into the Cataloochee 

Valley of GSMNP, North Carolina, resulted in the removal of bears from the 

reintroduction site to prevent predation during the elk calving season (Yarkovich 2009); 

hair samples were collected from bears as part of the capture/relocation process along 

with weight, sex and age information. A total of 21 bear hair samples collected for the elk 

reintroduction project were donated for stable isotope analysis. Mean values of the hair 

samples from Cataloochee Valley in GSMNP, Knoxville Zoo bear, Appalachian Bear 

Rescue bears, Gatlinburg nuisance bears, and nuisance bears in the picnic and 

campground areas of GSMNP were combined and used as reference samples to verify 

that differences in diets could be detected with stable carbon and nitrogen isotope 

analysis.  

SAMPLE SELECTION 

I used stratified random sampling to select hair samples for the period 1980–2001.  

This period coincided with the available mast survey data and covered sufficient temporal 

variation in feeding habits.  Black bears molt once a year, usually starting in late 

spring/early summer and are variable depending on nutrition (C.T. Robbins Washington 

State University, personal communication).  Hair collected in the late summer/early fall 

represents diet from the current season (Felicetti et al. 2003). Black bears have two types 

of hair, guard hairs and underfur. The guard hair in black bears is for protection of the 

skin and the underfur is mainly for insulation so these two different types of hair grow 

during different times of the year. The underfur primarily starts to grow in fall for 

thermoregulation during hibernation and the guard hair starts to grow depending on 



 

17 
 

nutrition in late summer (C.T. Robbins Washington State University, personal 

communication).  I selected guard hair samples that were collected between May and 

August to represent the previous year of food eaten. I stratified the samples according to 

age, sex, and year.  For each year, I selected 6 samples (3 for each sex; and 1 for each of 

the 3 age classes within sex; Table 1).   

SAMPLE PREPARATION 

I transferred all hair samples to 15- x 45-mm glass vials and rinsed samples with 

deionized water to remove any large particles.  Glass vials with rinsed hair were placed 

under a fume hood to dry.  Enrichment of isotopes can differ for lipids synthesized from 

carbohydrates compared with lipids derived directly from fat (Gannes et al. 1998).  To 

prevent erroneous results from fat deposited on the hair, I removed the lipids from hair 

samples by placing the hair in Soxhulet thimbles in a beaker with approximately 250 ml 

of a 2:1 chloroform methanol solution (Acros Organics, Morris Plains, New Jersey, USA; 

Fisher Chemical, Fairlawn, New Jersey, USA, respectively).  The beakers were covered 

with aluminum foil and placed in a water bath for sonication using a Fisher Scientific 

Sonic Dismembrator Model 500 (Branson Ultrasonics, Danbury, Connecticut, USA).  

Hair samples were sonicated for 15 min at 30% amplitude.  After sonication, I placed 

samples in clean, labeled glass vials and dried them in an oven at 40º C overnight (Z. Li 

University of Tennessee, personal communication).   

I cut hair samples into 1-mm segments to obtain homogenous samples for 

analysis.  To prevent any exogenous oils from contaminating the samples, I sterilized 

aluminum foil at 400ºC for 3 hours.  I placed hair samples into a square piece of foil 
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approximately 5 x 5 cm and rolled the hair in the foil.  I cut the foil into 1-mm segments 

and removed the cut hair for storage until all samples were clipped and ready to weigh.   

Hair samples weighing from 1.3 to 1.5 mg were placed in a 5 x 9-mm pressed tin capsule 

(Costech Analytical Technologies, Valencia CA, USA) and folded for isotope analysis.  I 

placed samples into a well tray until all samples were prepared and ready to be placed in 

the spectrometer (described under stable isotope analysis: Table 2).  

Hair samples used for reference values were obtained as a courtesy from multiple 

sources (Table 3).  All reference samples were already being collected for various 

projects; additional sample collection was approved by IACUC protocol #1930.    

FOOD ITEMS COLLECTION AND PREPARATION 

I collected natural plant food items as available during 2009/2010 (oak acorns, 

huckleberry, blueberry, and wild grape).  All food items were stored frozen in sealed 

plastic bags until ready for analysis.  A variety of frozen acorn samples (Table 3) for 

analysis were donated by Appalachian Bear Rescue and mailed to the University of 

Tennessee where they were stored frozen until analyzed.  Preparation of food items 

involved drying in glass vials at 40°C for 24-72 hours. After the samples were dried, I 

used a mortar and pestle to grind the food item to a fine powder and placed the pulverized 

food item back in a clean dry glass vial. Once all food items were ground into a fine 

powder, samples were weighed (1.4 – 1.5 mg) and placed in a 5 x 9-mm pressed tin 

capsule for isotope analysis.  I placed samples into a well tray until all samples were 

prepared and ready to be placed in the mass spectrometer. 
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STABLE ISOTOPE ANALYSIS 

Stable isotopes of carbon and nitrogen were analyzed using a Thermo-Finnigan 

isotope ratio mass spectrometer Delta Plus XL, coupled with COSTECH Elemental 

Analyzer (ECS4010; Stable Isotope Laboratory at Department of Earth and Planetary 

Sciences, University of Tennessee, Knoxville, USA).  The ratios were reported as parts 

per thousand of the isotope (
0
/00) relative to a standard  standardx R as: 

13 15 3

standard

C N 1 10sampleR
or

R
 

  
    

  
, 

where,  13 12 15 14is C C or N NR  (Smith and Epstein 1971; DeNiro and Epstein 1978, 

1980; O’Leary 1981, 1988).  The Rstandard  for 
13

C is the Pee Dee Belemnite (PDB) 

standard for carbon (Craig 1957, Karasov and del Rio 2007).  The Rstandard  for 
15

N is 

atmospheric nitrogen (AIR; Mariotti 1983, Karasov and del Rio 2007).  A total of 49 

samples were analyzed per run. The 49 samples included: 2 bypass samples of Atropine 

~1mg (Costech Analytical Technologies, Valencia CA, USA), 1 blank foil capsule 

(Costech Analytical Technologies, Valencia CA, USA), 4 standard samples (0.5, 1.0, 1.5, 

and 2.0mg) of Acetanilide to establish a calibration curve (Costech Analytical 

Technologies, Valencia CA, USA), and isotope reference samples (~0.7-1.0mg) of USGS 

40 and 41 L-Glutamic Acid (U.S. Geological Survey Reston, VA, USA). The first 

reference samples were run as the 8
th

 and 9
th

 sample after all bypass, blanks, and standard 

samples, thereafter I ran reference samples after every tenth hair sample (Table 2).  
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DISCRIMINATION FACTOR 

The assimilation of food items varies depending on composition of a species’ diet 

but does not vary among bear species (Pritchard and Robbins 1990).  When a consumer 

metabolizes organic matter, there is net difference (discrimination factor) between the 

food item and assimilated stable isotope value known as metabolic fractionation (Karasov 

and Martinez del Rio 2007).  The value for metabolic fractionation depends on the type 

of diet consumed (Pritchard and Robbins 1990).   The isotopic values of the consumer’s 

diets are not always equal to the values of their organic diet because the proteins, 

carbohydrates, and lipids are routed to different tissues. This difference between the 

stable isotope signature of the consumer’s diet and the stable isotope signature of a 

particular tissue i.e., serum, plasma, bone, hair, teeth, liver, etc. is termed the 

discrimination factor (Cerling and Harris 1999) or metabolic fractionation. There have 

been several studies examining the discrimination factor between consumer and diet and 

the results vary widely among studies. To determine an appropriate value to apply for the 

discrimination factor, results I compared the results from studies on appropriate values 

for discrimination factors.  Ben-David (1996) and Ben-David et al. (1997a, 1997b, 2001, 

2004),  found that clotted blood cells had a 2‰ enrichment for ∆δ
 13

C when mammalian 

prey, avian prey and berries were consumed and 1‰ enrichment when salmon or 

invertebrates were consumed.  For ∆δ
 15

N, Ben-David et al. (1997, 2001) used a 3‰ 

fractionation value.  Hilderbrand et al. (1996) found that plasma ∆δ
 13

C was enriched by 

0.4 to 4.5‰ when dietary values were –18.5 to –25.5‰ and ∆δ
 15

N was enriched 4.1 

±0.5‰ in plasma in captive American black bears compared to their diet.  DeNiro and 
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Epstein (1978) found that the whole body ∆δ
 13

C  of animals were enriched 0.3±1.1‰.  

DeNiro and Epstein (1981) found that the whole body ∆δ
 15

N of animals were enriched 

3.0 ±2.6‰ compared with their diets.  Felicetti et al. (2003) found that the discrimination 

factor for ∆δ
 13

C diet to plasma of grizzly bear plasma (U. arctos) varied substantially and 

that the discrimination factor for ∆δ
 15

N to plasma was 3.0 ±5.0‰.  Tieszen et al. (1983) 

reported fractionation values for hair using captive gerbils (Meriones unguiculatus) in 

captive feeding trials of 1‰ for ∆δ
 13

C over the diet.  Lesage et al. (2002) used stable 

carbon and nitrogen isotope analysis to look at fractionation in Phocid seals and found a 

∆δ
 13

C diet-hair fraction value of 2.3±0.1‰ and ∆δ
 15

N diet-hair fractionation value of 

2.3±0.8‰.  McCutchan et al. (2003) did a review of the literature regarding stable carbon 

and nitrogen isotope diet-tissue fractionation and found that for all animals within the 

various studies, the mean estimates of trophic shift for ∆δ
13

C was + 0.4 ± 0.12‰ and + 

2.0 ± 0.20‰ for ∆δ
15

N.   

To examine if the mean stable isotope signature of the population is different 

from mean stable isotope signature of the natural food items found in GSMNP, a 

fractionation correction value was applied to account for the known trophic shift between 

consumer and diet.  I applied a value of 2‰ for ∆δ
 13

C and 3‰ for ∆δ
15

N to account for 

the metabolic fractionation that occurs between diet and consumer based on average 

discrimination factor values (Table 4) from the reviewed literature (DeNiro and Epstein 

1978, 1981; Ben-David 1996; Hilderbrand et al. 1996; Ben David et al. 1997a, 1997b, 

2001, 2004; Tieszen et al. 1983; Lesage et al. 2002 Felicetti et al. 2003). Because there 

still is some question as to the correct fractionation value to apply depending on species, 
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diet, and tissue analyzed, I also compared the stable isotope signatures of natural food 

items in GSMNP with the hair samples using stable carbon and nitrogen isotope values 

without any discrimination factor.  When examining changes in black bear diets over a 

long period of time, it was not necessary to use a discrimination factor because I was not 

directly comparing the stable isotope signatures in hair samples from bears with the 

stable isotope signatures of the natural food items consumed. However, for consistency I 

use the corrected values for the entire analysis.  

STATISTICAL ANALYSIS 

 I used weight class because of the subjective assessments for body condition by 

different individuals over time. To account for differences in weight based on age and 

sex, I constructed the three weight categories (below average, average, and above average 

weight) using weight and standard deviation for the 6 combinations of age and sex from 

all recorded bears (Table 5). The categories were calculated as: 

  below average weight lower limit = μ – (1.5 * Std. dev), 

  below average weight upper limit = μ – (0.5 * Std. dev), 

  average weight lower limit = μ – (0.5 * Std. dev), 

  average weight upper limit = μ + (0.5 * Std. dev), 

  above average weight lower limit = μ + (0.5 * Std. dev) and,  

  above average weight upper limit = μ + (1.5 * Std. dev). 

GSMNP personnel conduct hard mast surveys each year and calculate a hard mast 

index using the methods developed by Greenberg and Warburton (2007).  I used the 

values from this index as my hard mast variable.  Acorn production varies by species 
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classified into two groups, red oak and white oak (Greenberg and Parresol 2000, Ober 

2008).  White oak species produce mast yearly and red oak species production occurs on 

a 2-year cycle. White oak acorn production is more variable than red oak acorn 

production (Greenberg 2000, McNutt 2002).  Red oak acorns have higher protein and fat 

content and more calories but because of the higher tannin and fiber content they are not 

as easily digestible.  Most wildlife species prefer white to red oak acorns because of the 

lower tannin content (Clark 2004, Ober 2008).  Black bears will eat both red oak and 

white oak depending on the mast production for that year (Eagle and Pelton 1983). I used 

three hard mast variables in my model set, total hard mast index, white oak index and red 

oak index (Clark et al. 2005) to account for potential variation in acorn consumption by 

black bears depending on availability and preference.  I offset the hard mast index by one 

year to correspond with the dietary time period of the hair sample (Table 5). Hair samples 

for analysis were collected from May to August representing the previous year’s diet and 

the hard mast index is representative of the current year. Wild hogs were trapped or 

hunted during my study period for wildlife damage control. Hog carcasses were left in 

the park to be scavenged by native wildlife. I totaled the number of hogs killed in areas 

that corresponded to the historical trap lines as a measure of potential meat consumption 

by black bears. I compiled a list of all research bears that became nuisance bears at some 

future date and used this as a nuisance variable in my models.  I used three age class 

categories for classification of bears; sub-adult (1.5 – 3yrs), adult (3.5–6.5yrs) and older 

adult (≤ 7yrs). 
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I developed an a priori suite of linear regression models examining if sex, age 

class, year, weight, total hard mast index (HMI), white oak mast index, red oak mast 

index, bear nuisance status, and hog kill were associated with stable carbon (δ
13

C) and 

nitrogen (δ
15

N)  isotope signatures using an information-theoretic (IT) approach 

(Burnham and Anderson 2002, 2004; Anderson 2008). I constructed dummy variables for 

my categorical variables; weight class, sex, and nuisance status. Dummy variables were 

coded as: 

  if age_class=1 then age_class1=1; else age_class1=0; 

  if age_class=2 then age_class2=1; else age_class2=0; 

  if sex=1 then sex1=1; else sex1=0; 

  if nuisance=1 then nuisance1=1; else nuisance1=0; 

  if weight_class=1 then weight_class1=1; else weight_class1=0; 

  if weight_class=2 then weight_class2=1; else weight_class2=0; 

I ran a Proc Reg (SAS Institute, 2009, Cary, North Carolina, USA) to calculate RSS 

values and used the equation from Anderson (2008) to calculate Akaike’s second order 

information criterion (AICc) and the relative weights of each model as:  

 2ˆlog 2 ,
1

c

n
AIC n K

n K


 
   

  
  

Where, K is the number of parameters including the intercept and: 

2
2 ˆ

ˆ i

n


    
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 To rank the models within the set, I used the AIC with a second-order correction 

criterion for small sample size values (AICc) and Akaike weights to examine relative 

importance of each model. I ascertained a relative measure of empirical support by 

looking at the difference between the top model and other models within the candidate 

set.  Models with ∆AICc values ≤ 2 were well supported and ∆AICc values ≥10 were not 

considered to have much support.  Akaike weights are a measure of the weight for the 

best model compared with all other models in the set. Model weights  iw were 

calculated with the assumption that the best model is included as: 

1

1
exp

2

1
exp

2

i

i
R

ir

w



 
  
 
 
  
 


 

where R is the number of models in the candidate set and r is the first model in the 

summation (Burnham and Anderson 2002, Anderson 2008).  I used model averaging of 

the parameter estimates across my entire set of models to obtain a robust estimate for 

each of my parameters (Burnham and Anderson  2002, Anderson 2008).   

  .

ˆ
j jw j 

 

where j  is the linear regression coefficient associated with the predictor variable  jx  

and 
ˆ

j  is the estimate of j  averaged across all models where jx  appears, and  j  is 

the predictor variable.   is a second model-averaged estimator with  w j  being the 

sum of the Akaike weights over all models in the set where the predictor variable  j
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occurs and where 
jx  is not in a particular model, 

, 0j i   is used (Burnham and 

Anderson 2002, 2004;  Anderson 2008). I calculated unconditional variances for each 

parameter to take into account model selection uncertainty as: 

     
2

1

ˆ ˆˆ ˆvar var |
R

i i i i

i

w g   


 
   

 
  

where 
ˆ is the model averaged estimate, iw are the model probabilities and ig is the ith

model (Burnham and Anderson 2002, Anderson 2008).  I calculated unconditional 

confidence intervals using the model averaged parameter estimates and standard error 

based on the unconditional variance (Burnham and Anderson 2002, Anderson 2008).  

   ˆ ˆ
varse    

Using my model averaged estimates; I examined which parameters were associated with 

variations of stable carbon (δ
13

C) and nitrogen (δ
15

N) isotope signatures for black bears 

in GSMNP over a 20 year time period. All assumptions of normality for linear regression 

analysis were met. 

 I used the IT approach and AIC to estimate the size of the effect (Anderson 2008) 

on the stable carbon (δ
13

C) and nitrogen (δ
15

N) isotope signatures within the population 

of black bears in GSMNP. For general comparisons of food items and hair samples, 

estimating the effect size was not the goal. I wanted to examine if there was simply a 

difference in the mean signatures of the entire population of black bears in GSMNP 

compared to the natural food items of black bears in GSMNP. I used a confirmatory 

investigation (Anderson 2008), hypothesizing the mean stable carbon (δ
13

C) and nitrogen 
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(δ
15

N) isotope signatures of black bear natural food items in GSMNP would be depleted 

compared to mean stable carbon (δ
13

C) and nitrogen (δ
15

N) isotope signatures in hair 

samples from black bears in GSMNP.  I used the Aspen-Welch unequal variance t-test 

(NCSS Software 2007, Kayscill, Utah, USA) to compare means between the sample 

population and natural food items.  I compared means of the sample populations with 

both corrected and non-corrected values for fractionation differences between assimilated 

diets and food items.   

To check for sample homogeneity, I randomly selected and analyzed one 

subsample from each year for stable carbon and nitrogen isotope values and looked at the 

standard deviation of the absolute value for the differences between sample sets.     
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CHAPTER IV 

RESULTS 

STABLE CARBON AND NITROGEN ISOTOPES OF REFERENCE SAMPLES 

 Differences in diet were detected for both stable carbon and nitrogen isotope 

analysis from reference hairs (Figure 2A, 2B).  The zoo bear, fed 4 whole fruits, 4 whole 

vegetables, 3 cups of chopped melon or grapes and a corn meal based kibble chow 

(Purina Proplan Weight Management Adult Chicken and Rice; Société des Products 

Nestlé S.A., Vevey, Switzerland) had enriched δ
13

C (-17.76‰) and δ
15

N (4.47‰) stable 

isotope signatures. Hair samples from nuisance bears (n = 3) in the Gatlinburg area 

collected from Tennessee Wildlife Resource Agency reflected a mixed diet of human 

foods and natural foods for δ
13

C ( x  -23.10‰, SD = 1.97) and δ
15

N ( x 1.02‰, SD = 

2.61).  Bears from Appalachian Bear Rescue (n = 2) fed a mixed diet of natural food and 

vitamin supplements also had enriched δ
13

C ( x  -22.64‰, SD = 1.87) and δ
15

N ( x 

1.46‰, SD = 2.02).  Orphaned bear cubs also from Appalachian Bear Rescue (n = 7) fed 

a mixed diet of natural foods and vitamin supplements had slightly enriched δ
13

C ( x 

24.06‰, SD = 1.63) and δ
15

N ( x   0.75‰, SD = 1.06). Black bears (n = 7) that were 

captured in the campgrounds and picnic areas of GSMNP during the summer of 2010 had 

δ
13

C signatures similar to the research bears in this study ( x  -25.52‰, SD = 1.10) and 

δ
15

N signatures slightly enriched compared with the research bears ( x 0.31‰, SD = 

0.76).  Bears (n = 21) from the Cataloochee Valley area in GSMNP that were a part of the 
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relocation project (Yarcovich 2009), had δ
13

C ( x  -25.26‰, SD = 0.69) and δ
15

N ( x 

1.47‰, SD = 0.55) signatures similar to the research bears in this project. Reported 

results were all corrected for metabolic fractionation (δ
13

C = 2.0‰, δ
15

N = 3.0‰). 

Applying the correction factors to hair samples shifts uncorrected values (Figure 3A, 3B) 

of δ
13

C toward C3 plant ranges and δ
15

N to ranges for lower trophic levels (Figure 4A, 

4B).   

STABLE CARBON ISOTOPE ANALYSIS 

Top models for δ
13

C stable isotope data included weight class, white oak index, 

red oak index, total hard mast index, and nuisance status (Table 6). Five models (M17, 

M9, M10, M11, M19) had ∆AICc values ≤ 2.657 and all included weight class.  

Cumulative weight of those five models was 0.772. The most parsimonious model (M17) 

included weight class and white oak index and had a weight of 0.370.  The second top 

model (M9) included only weight class (wi = 0.28, ∆AICc = 0.540).  In addition to weight 

class, the next three models included total hard mast index, nuisance, and red oak index, 

respectively (Table 6). All other models had ∆AICc values ≥ 7.280 and weights ≤ 0.010, 

with a cumulative weight of 0.029.  The r-squared values for the top five models (M17, 

M9, M10, M11, M19) were: 0.15, 0.13, 0.13, 0.13, and 0.13 respectively. Based on 

model averaging, bears in the highest weight class had δ
13

C signatures that were 0.76‰ 

(95% CI = 0.28 to 1.23) greater compared with the low-weight class, and average-weight 

was 0.42‰ (95% CI = 0.06 to 0.78) greater compared with the low-weight class. There 

was a positive relationship with white oak index. In years with increased white oak acorn 

production, δ
13

C values were more enriched compared with years of lower production (ß 
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= 0.04, 95% CI = −0.08 to 0.16).  All other variables (sex, age class, year, total hard mast 

index, red oak index, nuisance status and hog kill) had parameter estimates that were not 

greater than the analytical error of the mass spectrometer and 95% confidence intervals 

that included zero (Table 7).    

STABLE NITROGEN ISOTOPE ANALYSIS 

Two models (M16, M14) accounted for a cumulative model weight of 0.893. The 

most parsimonious model (M16) included age class and white oak index (wi = 0.732).  

The next best model (M14) included white oak index (∆AICc = 3.030, wi = 0.161). All 

other models had limited support (∆AICc ≥ 5.746, wi ≤ 0.041, cumulative wi = 0.107; 

Table 8).  Based on model averaging, years with increased white oak mast production, 

δ
15

N values were depleted compared with years of lower white oak mast production (ß = 

-0.19, 95% CI = −0.34 to −0.03).  Older adult bears (≥7 yrs) had depleted δ
15

N signatures 

(ß = -0.36, 95% CI = −0.85 to 0.14) compared with subadult bears (1.5–3.0 yrs).  Adult 

bears had slightly depleted δ
15

N signatures (ß = -0.03, 95% CI = −0.35 to 0.30) compared 

to subadult bears. The r-squared value for the top model (M16) was 0.14 and for the next 

top model (M14) r-squared = 0.08. All other variables (sex, weight class, year, total hard 

mast index, red oak index, nuisance status and hog kill) had parameter estimates that 

were not greater than the analytical error of the mass spectrometer and 95% confidence 

intervals that included zero (Table 9).  

FOOD ITEMS 

Signatures of stable carbon isotopes of natural food items differed from those of 

black bear hair samples with or without the discrimination factor for metabolic 
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fractionation. Mean δ
13

C for black bear hair without the discrimination factor was -

22.74‰, whereas the mean δ
13

C value for natural food was -27.23‰ (t = 4.33, P = 

0.001; Figure 5). After correcting for metabolic fractionation from prey to consumer, 

mean δ
13

C for black bear hair was -24.74‰, which also was different from food items (t 

= 2.40, P = 0.04; Figure 5). 

The uncorrected mean δ
15

N for black bear hair (2.44‰) was greater than food 

items (-0.01‰; t = 2.89, P = 0.02; Figure 6). The corrected δ
15

N value for black bear hair 

was -0.56‰, which was not different from food items (t = 0.58, P = 0.08; Figure 6). 

SAMPLE HOMOGENEITY 

The overall sample homogeneity for δ
13

C and δ
15

N were within analytical error (n 

= 22, SD = 0.17; SD = 0.13 respectively).   
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CHAPTER V 

DISCUSSION 

The metabolic fractionation between diet and consumer plays an important role in 

being able to determine if there is a difference between a species’ diet and the natural 

food items that the species would consume under natural conditions. In order to apply a 

correction factor in stable isotope analysis of diet among wildlife, researchers must select 

an appropriate value from the literature; this value varies widely. I attempted to choose 

values that were closest to the diet of black bears (Ben-David et al. 1997a, 2001; 

Hilderbrand 1996) because the metabolic fractionation is dependent on the composition 

of a diet (Pritchard and Robbins 1990). However, the values I chose were appropriate to 

black bears in GSMNP. Different values may have changed the comparisons of food 

items and the diet, but would not change the conclusions for factors affecting δ
13

C and 

δ
15

N signatures. 

STABLE CARBON ISOTOPES 

Stable carbon isotope analysis often is used to examine differences in diets within 

a species resulting from consumption of C4 or C3 plants.  Stable carbon isotopes (
12

C and 

13
C) are fractionated depending on the metabolic pathway of C3, C4, and CAM 

vegetation. The C3 pathway (Calvin Cycle) is the most common and most primitive 

photosynthetic pathway used by plants. Smith and Epstein (1971) found that plants with 

enriched δ
13

C signatures are aquatic, desert, salt marsh and tropical grasses. Plants with 



 

33 
 

depleted δ
13

C signatures are found in the temperate regions and comprise the bulk of the 

plant kingdom. There is overlap in signatures between these two groups but the average 

δ
13

C signatures for each group is different which is the basis for using stable carbon 

isotope analysis in wildlife nutrition studies.  I observed a distinct gradient of δ
13

C 

signatures ranging from zoo bears that were fed a corn-based chow diet to nuisance bears 

in the Gatlinburg area to research bears captured in backcountry areas (Figure 2).  After 

applying a correction factor of 2‰ for metabolic fractionation between diet and 

consumer, a mean difference of 2.49‰ existed for δ
13

C between natural foods and 

assimilated diets of bears.   

There was not support for sex and age class in association with changes in δ
13

C 

stable isotope values. Males were no more likely than females to be associated with 

changes in δ
13

C stable isotope values (ß ˂ 0.01, SE = 0.02, 95% CI = -0.04–0.05).  Adults 

and old adults were no more likely than subadults to be associated with changes in δ
13

C 

stable isotope values (ß ˂ 0.01, SE ˂ 0.01, 95% CI = -0.05–0.05; ß ≤ 0.01, SE = 0.06, 

95% CI = -0.11–0.12) respectively.  The parameters sex and age class have been 

documented as being associated with the status of black bears in GSMNP i.e., panhandler 

or wild (McLean and Pelton 1990).  

However, bears in better physical condition, adjusted for age and sex, were more 

likely to have assimilated diets that included C4 plants as a source based on δ
13

C . 

Previous studies also show that larger bears generally have access to higher quality foods 

than smaller bears. Dobey et al. (2005) found that larger body mass was associated with 

black bears that had greater access to C4 plant sources (e.g. corn). Black bear density 
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within GSMNP is high with 0.92 bears/km
2
 (2003 estimate; Laufenberg 2010). Thus, 

competition for resources is likely high and bears in the high weight class, adjusted for 

age and sex, may be better competitors for food, including energy-rich, anthropogenic 

foods. 

Because the natural diet of American black bears is C3 plants (Hilderbrand 1996) 

and the C4 plants that are native or exotic to GSMNP are not likely selected foods of 

black bears, the origin of the C4 source must be anthropogenic, thus providing a useful 

indicator of anthropogenic food sources in the diet of black bears. The source of C4 plants 

in bear diets is difficult to determine directly. Although nuisance behavior would seem to 

favor use of C4 plants, nuisance status had little support.  Out of 117 bear samples I 

analyzed, only 6 bears were subsequently captured for nuisance activity in the 

campgrounds or picnic areas.  Tate and Pelton (1980) found that removal of nuisance 

bears within GSMNP was often random, and not always a result of nuisance behavior. Of 

the 6 bears, only 3 were actually observed exhibiting nuisance behavior.  These 

observations are supported by Beeman and Pelton (1980), who estimated that 90–95% of 

bears rarely visited campgrounds or picnic areas. They speculated anthropogenic foods 

may comprise a substantial portion of the diet for a few bears but very little, if any, for 

most of the population. This is supported by the relatively low variation in δ
13

C 

signatures of bears over the 20-year period (Figure 7). Nuisance bears removed from the 

campgrounds and picnic areas in GSMNP during the summer of 2010 had δ
13

C signatures 

similar to those of the research bears.  
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The low numbers of bears that transition from research to nuisance bears suggests 

sources of C4 foods other than those available in campgrounds or picnic areas were 

responsible for the slightly enriched δ
13

C signature. A potential source of C4 plants could 

be corn bait used to trap wild hogs (Sus scrofa) in GSMNP.  Since 1965, NPS personnel 

have removed wild hogs from park land, primarily by trapping.  However, my analysis 

did not indicate support for the variable hog kill (Table 6). The amount of bait available 

to bears is small because trapping of hogs primarily occurs in winter, when bears are 

hibernating. A third potential source of C4 food items may originate with backpackers. 

An average of 83,675 (SD = 13,036) backpackers visit GSMNP annually (NPS 2011), 

particularly during months when bears are most active. Before bear-proof storage cables 

were installed in the latter part of the 1990s, bears frequently accessed foods at 

backcountry sites. Backcountry campsites likely remain a small but widely distributed 

source of human foods for bears. 

STABLE NITROGEN ISOTOPES 

Mean δ
15

N values of black bear hair showed substantial variation during 1990–

2001 compared with 1980–1989 (Figure 8).  The period of high variability in δ
15

N 

corresponded to several hard mast failures. Values of δ
15

N peaked during years when 

major hard mast failures occurred. Hard mast is crucial in fall to meet energetic 

requirement for the hyperphagic period prior to hibernation (Beeman and Pelton 1980, 

Eagle and Pelton 1983). Greenfell and Brody (1983) showed that the proportion of acorns 

in the diet of black bears was positively associated with acorn production. During years 

when hard mast was abundant, δ
15

N values were low. This pattern likely corresponded to 
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the low δ
15

N values I observed for acorns.  Of the three mast indices I considered, white 

oak mast index showed the strongest association with δ
15

N. White oak acorns are 

preferred over red oak acorns (Clark 2004) but annual variation tends to be more extreme 

for white oaks. The enriched δ
15

N signature during years with poor or failing white oak 

crops may be a function of bears seeking alternative protein-rich foods.  Those foods may 

include animal sources, such as colonial insects and carrion. 

Basic energetic demand of protein requirement during the growth period may 

explain why subadult black bears had higher δ
15

N values than adult and older adult bears. 

Age class was an important variable likely because of the physiological mechanisms that 

drive protein consumption in animals. Growth of animals is related to the energy 

available from the different chemical constituents of the body i.e., minerals, proteins, and 

lipids. During growth, there is an accumulation of matter and energy into the developing 

organism known as the growth rate (Robbins 1993). The basic energetic demand required 

for sub adult black bears for growth is likely driving this class of bears to seek out more 

protein rich food.   

 Nitrogen values for this study were based on acorns and soft mast.  Potential 

natural prey items i.e., white-tailed deer (Odocoileus virginianus), elk (Cervus 

canadensis), wild pig, yellow jackets (Vespula maculifrons), termites (Reticulutermes 

spp.), and other small mammals were not collected for this study.  Therefore, it is 

difficult to draw any conclusions regarding the potential carnivorous food habits of black 

bears in GSMNP without δ
15

N values of the potential prey items. For future studies, it 
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would be beneficial to collect these prey items for stable isotope analysis to gain a better 

understanding of trophic relations of black bears in GSMNP.  

FUTURE RESEARCH NEEDS 

The models for both carbon and nitrogen had low r-squared values. This suggests 

much of the variation associated with changes in carbon and nitrogen levels were not 

explained. One potential source for this variation is the inability to measure how much 

meat or how much of a C4 plant needs to be consumed to enrich a stable isotope 

signature. If the amount of food required to change a stable isotope signature could be 

measured, this could potentially explain the additional variation associated with carbon 

and nitrogen stable isotopes. An additional source of variation could be due to seasonal 

differences of diets within the population. Analysis of the entire hair provides an average 

signature for diet during the period of hair growth without capturing the variation that 

may exist within that period of different classes of bears i.e., sex, age, weight.  

Additional research is needed to examine the source of the C4 plants that is 

contributing to the diet of black bears in GSMNP. The use of mixing models may 

facilitate understanding of the relative contribution of food items to the diet of black 

bears. Mixing models analyze the relative proportion of different food sources that 

contribute to the diet of a species (Phillips 2001, Ben-David and Schell 2001, Phillips and 

Koch 2002, Moore and Semmens 2008). Mixing models have generally been used for 

more carnivorous species, particularly with marine and terrestrial diets to examine the 

relative contributions of particular stable isotopes from plant and meat sources either 

terrestrial or marine derived (Hilderbrand et al. 1999b, Felicetti et al. 2003, Robbins et al. 
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2004). I focused on main food items of black bears based on previous studies and did not 

collect meat sources. Black bears in GSMNP do not feed on a marine source. Thus, future 

work should collect all potential food items of black bears in GSMNP and use mixing 

models if the C:N ratios in the food items are substantially different. The mixing models 

would help examine the relative contributions of different food items (Robbins et al. 

2002, 2004: Moore and Semmens 2008). By analyzing and incorporating the food 

stoichiometery and knowing the efficiency of assimilation for different food items, it 

would be possible to examine the proportional contributions of soft mast compared with 

hard mast for black bears. 
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CHAPTER V 

MANAGEMENT IMPLICATIONS 

Variation in δ
13

C and δ
15

N values over the 20-year period could not have been 

evaluated with a short-term study. A long-term study was needed to understand the 

overall feeding patterns of black bears in years of good or poor mast crops. The gradient 

of stable isotope signatures that I detected provides support that this technique is useful to 

examine potential anthropogenic food source exploitation by black bears and other 

wildlife species (Newsom et al. 2010). Bears in the best weight for sex and age class had 

higher use of anthropogenic foods. We do not know if their enhanced condition was due 

to their ability to exploit nutrient rich, anthropogenic foods or if the enhanced condition 

allowed them to outcompete for these human-based resources. 

The lack of distinct groups exploiting anthropogenic foods within GSMNP 

suggests an abundant supply of primary and alternative food sources for black bears 

within the park. Moreover, the depleted δ
13

C signature in the nuisance bears captured in 

the campgrounds and picnic areas of GSMNP suggests they primarily fed on natural 

foods. It would be of interest to continue collecting hair on nuisance bears captured or 

removed from campground or picnic areas to examine if the depleted δ
13

C signatures 

persist over time. The δ
13

C signatures of live-trapped bears showed little variation over 

the 20-year period of this study (Table 9) and were similar to those of the nuisance bears 

captured or removed during the summer of 2010.  Therefore, prompt management by 
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GSMNP personnel may be reducing the number of bears from accessing anthropogenic 

food sources.   

Availability of alternate food sources and physiological requirements of animals 

affect their use of anthropogenic foods. The observations made by Beeman and Pelton 

(1980) found only a few bears accounted for the total exploitation of anthropogenic food 

sources within the population. I found sub-adult and larger bears were more likely to 

access anthropogenic food sources. In years of poor mast crops, managers should 

consider demographics and physiological requirements to identify which bears are 

potentially more likely to become nuisance bears. 
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Table 1. Hair samples analyzed for stable carbon and nitrogen isotopes from black bears 

live-trapped in Great Smoky Mountain National Park, Tennessee, USA, 
a
1980–2001.  

Sample 

ID 
Year Age Sex Sample ID Year Age Sex 

1033701 1980 2.5 Male 1035501 1980 1.5 Female 

1034601 1980 4.5 Male 1025303 1980 3.5 Female 

1023702 1980 9.5 Male 1035401 1980 13.5 Female 

1036302 1981 1.5 Male 1038801 1981 2.5 Female 

1034502 1981 4.5 Male 1037901 1981 4.5 Female 

1039401 1981 7.5 Male 1021302 1981 7.5 Female 

1046501 1982 2.5 Male 1039801 1982 2.5 Female 

1037302 1982 3.5 Male 1039901 1982 3.5 Female 

1042101 1983 2.5 Male 1035204 1982 13.5 Female 

1042201 1983 4.5 Male 1040104 1983 2.5 Female 

1050501 1986 2.5 Male 1035903 1983 6.5 Female 

1046603 1986 4.5 Male 1020112 1983 8.5 Female 

1053901 1987 2.5 Male 1056101 1986 1.5 Female 

1050902 1987 3.5 Male 1051701 1986 3.5 Female 

1044102 1987 7.5 Male 1050201 1986 12.5 Female 

1058101 1988 2.5 Male 1055201 1987 1.5 Female 

1058701 1988 3.5 Male 1053101 1987 5.5 Female 

1057901 1988 8.5 Male 1053501 1987 8.5 Female 

1060501 1989 2.5 Male 1058501 1988 2.5 Female 

1063601 1989 3.5 Male 1059101 1988 4.5 Female 

1063001 1989 7.5 Male 1016608 1988 13.5 Female 

1068201 1990 2.5 Male 1062601 1989 2.5 Female 

1068801 1990 3.5 Male 1059801 1989 5.5 Female 
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Sample 

ID 
Year Age Sex Sample ID Year Age Sex 

1067801 1990 9.5 Male 1064201 1989 8.5 Female 

1070801 1991 3.5 Male 1066701 1990 2.5 Female 

1070601 1991 4.5 Male 1057303 1990 5.5 Female 

1069801 1991 8.5 Male 1060702 1990 7.5 Female 

1074601 1992 2.5 Male 1071501 1991 3.5 Female 

1073901 1992 3.5 Male 1059402 1991 5.5 Female 

1060402 1992 8.5 Male 1055803 1991 9.5 Female 

1074802 1993 1.5 Male 1075501 1992 2.5 Female 

1076101 1993 3.5 Male 1073401 1992 4.5 Female 

1071402 1993 7.5 Male 1075001 1992 7.5 Female 

1079601 1994 2.5 Male 1077001 1993 3.5 Female 

1081101 1994 4.5 Male 1076401 1993 5.5 Female 

1063403 1994 8.5 Male 1070902 1993 14.5 Female 

1083801 1995 1.5 Male 1079501 1994 3.5 Female 

1082901 1995 3.5 Male 1079701 1994 4.5 Female 

1062403 1995 9.5 Male 1069602 1994 8.5 Female 

1092401 1996 1.5 Male 1084301 1995 1.5 Female 

1080002 1996 5.5 Male 1076002 1995 3.5 Female 

1077504 1996 7.5 Male 1082101 1995 8.5 Female 

1136901 1997 1.5 Male 1089801 1996 1.5 Female 

1138501 1997 3.5 Male 1091501 1996 3.5 Female 

1066502 1997 8.5 Male 1073404 1996 8.5 Female 

1151001 1998 1.5 Male 1089802 1997 2.5 Female 

1146001 1998 3.5 Male 1084902 1997 6.5 Female 

1078304 1998 7.5 Male 1060803 1997 10.5 Female 

1151302 1999 2.5 Male 1144801 1998 2.5 Female 
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Sample 

ID 
Year Age Sex Sample ID Year Age Sex 

1147302 1999 4.5 Male 1147001 1998 3.5 Female 

1078602 1999 9.5 Male 1053802 1998 15.5 Female 

1160201 2000 2.5 Male 1157001 1999 2.5 Female 

1151502 2000 5.5 Male 1152601 1999 3.5 Female 

1090702 2000 7.5 Male 1076910 1999 13.5 Female 

1162301 2001 2.5 Male 1158601 2000 2.5 Female 

1154202 2001 5.5 Male 1137702 2000 5.5 Female 

1091902 2001 7.5 Male 1088302 2000 9.5 Female 

    1165801 2001 2.5 Female 

    1130006 2001 5.5 Female 

    1142304 2001 7.5 Female 

a 
Samples from 1984 were omitted because of missing biological information. Samples from 1985 were 

omitted because hard mast data was not collected.  
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Table 2. Sample order for processing hair samples collected from black bears live-trapped in Great Smoky Mountains National 

Park, Tennessee, USA, 1980–2001 in mass spectrometer, starting with sample A1 and ending with E1. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 
Bypass

a
 

Bypass
a
 

Blank
b
 

Standard
c
 

Standard
c
 

Standard
c
 

Standard
c
 

USGS40
d
 

USGS41
d
 

S1
e
 S2

e
 S3

e
 

B S4
e
 S5

e
 S6

e
 S7

e
 S8

e
 S9

e
 S10

e
 

USGS40
d
 

USGS41
d
 

S11
e
 S12

e
 S13

e
 

C S14
e
 S15

e
 S16

e
 S17

e
 S18

e
 S19

e
 S20

e
 

USGS40
d
 

USGS41
d
 

S21
e
 S22

e
 S23

e
 

D S24
e
 S25

e
 S26

e
 S27

e
 S28

e
 S29

e
 S30

e
 

USGS40
d
 

USGS41
d
 

S31
e
 S32

e
 S33

e
 

E S34
e
 Empty

f
 Empty Empty Empty Empty Empty Empty Empty 

Empt

y 

Empt

y 

Empt

y 

F Empty Empty Empty Empty Empty Empty Empty Empty Empty 
Empt

y 

Empt

y 

Empt

y 

G Empty Empty Empty Empty Empty Empty Empty Empty Empty 
Empt

y 

Empt

y 

Empt

y 

a
 Atropine C17H23O3 (~1mg) used to condition furnace. 

b
 An empty tin capsule is used as a blank reference. 

c
 Acetanilide C8H9NO (0.5, 1.0. 1.5, 2.0 mg) respectively used for a calibration curve. 

d
 Reference samples of USGS 40 and 41 L-Glutamic Acid (~0.7–1.0 mg). 

e
 Bear hair or food samples 

f
 A 96 well tray was used to store samples until ready for analysis in mass spectrometer, not all wells in tray were used. 
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Table 3.  Black bear hair and food reference samples used to evaluate stable carbon 

and nitrogen isotopes from black bears live-trapped in Great Smoky Mountains 

National Park, Tennessee, USA 1980–2001. 

 

 

Sample Location Source Type Donator 

Knoxville Zoo, TN, 

USA 

Black bear hair, known 

food source 

Dr. Ed Ramsey, University of 

Tennessee, Knoxville, School 

of Veterinary Medicine 

   

Gatlinburg, TN, 

USA 

Black bear hair, nuisance 

bears 

Dave Brandenburg, 

Tennessee Wildlife Resources 

Agency 

   

GSMNP Picnic and 

Campground Area, 

TN, USA 

Black bear hair, nuisance 

bears 

Bill Stiver, National Park 

Service, Great Smoky 

Mountains National Park 

   

Cataloochee Valley, 

North Carolina, USA 

Black bear hair, relocated 

bears for Elk 

reintroduction project 

Joe Yarkovich, National Park 

Service, Great Smoky 

Mountains National Park 

   

Townsend, TN, USA Black bear hair 
Lisa Stewart, Appalachian 

Bear Rescue Center 

   

British Columbia, 

Canada 

Black bear hair, hairs 

taken during legal harvest 

season 

Larry McKay and sons, 

University of Tennessee, 

Knoxville, Department of 

Earth and Planetary Sciences 

   

Townsend, TN, USA Acorns (Quercus spp.) 
Lisa Stewart, Appalachian 

Bear Rescue Center 
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Table 4. Discrimination factor values of metabolic fractionation between diet and 

consumer for ∆δ
13

C (carbon) and ∆δ
15

N (nitrogen) stable isotope analysis taken  

from wildlife nutrtition and stable isotope literature.   

Source 

δ
13

C Metabolic 

fractionation 

Correction Value 

δ
15

N Metabolic 

fractionation 

Correction Value 

Ben-David 1996; Ben-David et al. 

1997a, 1997b, 2001, 2001 
2.0‰ 3.0‰ 

Hilderbrand et al. 1996 0.4–4.5‰ 4.1 ± 0.5‰ 

DeNiro and Epstein 1978, 1981 0.3 ± 1.1 ‰ 3.0 ± 2.6 ‰ 

Felicetti et al. — 3.0 ± 5.0‰ 

Tieszen et al. 1983 1.0‰  

Lessage et al. 2002 2.3 ± 0.1 ‰ 2.3 ± 0.8 ‰ 

Average Value
a
 1.75 ± 1.6‰ 3.08 ± 0.65 

a 
Average values from literature were rounded and used for correction factors in  

 this study; 2.0‰ for ∆δ
13

C and 3.0‰ for ∆δ
15

N. 
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Table 5. Weight categories accounting for sex and age class based on a 95% confidence 

interval for all black bears live-trapped in Great Smoky Mountains National Park, 

Tennessee, USA, 

1980–2001. 

Age Class Sex 
Average 

Weight (lbs)
a
 

Standard 

Deviation 

95% 

LCL
b
 

95% 

UCL
c
 

Weight 

Category 

1.5–3.0yrs F 69.44 24.90 32 57 Below Average 

1.5–3.0yrs M 93.46 42.39 30 72 Below Average 

3.5–6.5yrs F 94.57 21.92 62 84 Below Average 

3.5–6.5yrs M 148.49 58.41 61 119 Below Average 

≥ 7yrs F 110.26 21.54 78 99 Below Average 

≥ 7yrs M 236.78 49.70 162 212 Below Average 

1.5–3.0yrs F 69.44 24.90 58 82 Average 

1.5–3.0yrs M 93.46 42.39 73 115 Average 

3.5–6.5yrs F 94.57 21.92 85 106 Average 

3.5–6.5yrs M 148.49 58.41 120 178 Average 

≥ 7yrs F 110.26 21.54 100 121 Average 

≥ 7yrs M 236.78 49.70 213 262 Average 

1.5–3.0yrs F 69.44 24.90 83 107 Above Average 

1.5–3.0yrs M 93.46 42.39 116 157 Above Average 

3.5–6.5yrs F 94.57 21.92 107 127 Above Average 

3.5–6.5yrs M 148.49 58.41 179 236 Above Average 

≥ 7yrs F 110.26 21.54 122 143 Above Average 

≥ 7yrs M 236.78 49.70 263 311 Above Average 

a
  Mean weights for each combination of weight class and sex were calculated using weights collected in the 

field from all black bears live-trapped in Great Smoky Mountains National Park, USA, 1980–2001. 
b
  Below average weight lower 95% confidence limit calculated as: μ – (1.5 * Std. dev), average weight 95% 

lower confidence limit calculated as: μ – (0.5 * Std. dev), above average weight 95% lower confidence 

limit calculated as: μ + (0.5 * Std. dev). 
c
  Below average weight upper 95% confidence limit calculated as: μ – (0.5 * Std. dev), average weight 95% 

upper confidence limit calculated as: μ + (0.5 * Std. dev), above average weight 95% upper confidence 

limit calculated as: μ + (1.5 * Std. dev). 
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Table 6. Hard mast indices for Great Smoky Mountains National Park, 1979–2000 from 

Greenberg and Warburton (2007)
a
, with corresponding black bear hair collection year. 

Year White Oak Index Red Oak Index Total Oak Index 
Hair Collection 

Year 

1979 4.33 (59)
b
 3.19 (61) 3.91 (120) 1980 

1980 0.78 (52) 4.00 (74) 2.87 (126) 1981 

1981 3.86 (65) 2.32 (88) 3.11 (153) 1982 

1982 0.67 (47) 2.23 (82) 1.79 (129) 1983 

1983 — — — 1984 

1984 — — — 1985 

1985 2.60 (77) 1.90 (83) 2.34 (160) 1986 

1986 1.60 (79) 3.04 (93) 2.53 (172) 1987 

1987 2.94 (99) 2.62 (116) 2.91 (215) 1988 

1988 2.96 (77) 3.21 (166) 3.33 (243) 1989 

1989 0.66 (75) 3.08 (160) 2.49 (235) 1990 

1990 1.25 (103) 1.61 (112) 1.53 (215) 1991 

1991 1.35 (99) 1.05 (147) 1.24 (246) 1992 

1992 0.50 (112) 0.85 (155) 0.76 (267) 1993 

1993 0.45 (95) 2.67 (155) 1.98 (250) 1994 

1994 0.79 (118) 2.20 (142) 1.68 (260) 1995 

1995 1.97 (99) 5.04 (167) 4.16 (266) 1996 

1996 3.94 (102) 1.87 (156) 2.81 (258) 1997 

1997 0.66 (97) 2.76 (165) 2.14 (262) 1998 

1998 1.73 (81) 3.77 (171) 3.33 (252) 1999 

1999 1.23 (105) 1.29 (150) 1.35 (255) 2000 

2000 0.78 (87) 1.61 (163) 1.42 (250) 2001 

a
 Visual surveys are used to determine the availability and distribution of mast (Whitehead 1969). Indices 

were calculated as: 100PBA PBA PBA
standard year max

 
  

 
where PBA is the proportion of trees bearing acorns 

 b
 Sample size of trees for given year. 
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Table 7. Model selection based on second-order Akaike’s Information Criteria (AICc) 

to evaluate stable carbon isotope delta  (δ
13

C) values of hair collected from black bears 

live-trapped in Great Smoky Mountains National Park, Tennessee, USA, 1980–2001.  

Model 

No. 

Models for δ
13

C Stable Isotope 

Values 
RSS K

a
 AICc ∆AICc

b
 wi

c
 

Evidence 

Ratio 

M17 γ = ß0 + ß1(WC)
d
 + ß2(WOI)

e
 + ε 67.359 4 -56.242 0.000 0.370 1.000 

M9 γ = ß0 + ß1(WC) + ε 68.923 3 -55.703 0.540 0.283 1.310 

M10 γ = ß0 + ß1(WC) + ß2(HMI)
f
 + ε 68.679 4 -53.972 2.271 0.119 3.112 

M11 γ = ß0 + ß1(WC) + ß2(NS)
g
 + ε 68.873 4 -53.643 2.600 0.101 3.668 

M19 γ = ß0 + ß1(WC) + ß2(ROI)
h
 + ε 68.907 4 -53.585 2.657 0.098 3.776 

M16 γ =ß0 + ß1(AC)
i
 + ß2(WOI)+ ε 71.684 4 -48.963 7.280 0.010 38.087 

M14 γ = ß0 + ß1(WOI) + ε 75.142 2 -47.702 8.540 0.005 71.536 

M8 γ = ß0 + ß1(SEX) + ß2(AC) + ß3(YEAR)+ ε 71.653 5 -46.829 9.413 0.003 110.668 

M12 γ = ß0 + ß1(HK)
j
 + ε 76.694 2 -45.309 10.933 0.002 236.627 

M6 γ = ß0 + ß1(SEX) + ß2(YEAR)+ ε 75.366 3 -45.247 10.996 0.002 244.175 

M5 γ = ß0 + ß1(SEX) + ß2(AC)  + ε 74.052 4 -45.159 11.083 0.001 255.089 

M2 γ = ß0 + ß1(YEAR) + ε 76.833 2 -45.099 11.144 0.001 262.927 

M1 γ = ß0 + ß1(AC) + ε 75.598 3 -44.886 11.356 0.001 292.358 

M7 γ =ß0 + ß1(AC) + ß2(HMI)+ ε 74.262 4 -44.828 11.415 0.001 301.043 

M4 γ = ß0 + ß1(SEX) + ε 77.509 2 -44.073 12.170 0.001 439.130 

M3 γ = ß0 + ß1(HMI)+ ε 77.577 2 -43.970 12.272 0.001 462.263 

M18 γ =ß0 + ß1(AC) + ß2(ROI)+ ε 75.563 4 -42.796 13.446 0.000 831.334 

M15 γ = ß0 + ß1(ROI) + ε 78.832 2 -42.093 14.150 0.000 1181.965 

M13 γ = ß0 + ß1(NS) + ε 78.859 2 -42.053 14.189 0.000 1205.408 

a 
Number of parameters plus 1 for intercept. 

b
  Relative difference between AICc of model and AICc of model with lowest AICc. 

c
  Model weight. 

d
  WC (weight class) Weight classes were calculated using weight recorded for all bears captured during 

the study period based on a normal distribution with 95% confidence intervals for each age and sex 

categories; low-weight, average-weight, and above- average weight. 
e
 WOI is the white oak index for GSMNP as calculated by Greenberg and Warburton (2007). 

f
 HMI is the total hard mast index for GSMNP as calculated by Greenberg and Warburton (2007).   

g
 NS are research bears that subsequently were captured or removed from campgrounds or picnic areas 

of GSMNP. 
h
 ROI is the red oak index for GSMNP as calculate by Greenberg and Warburton (2007). 

i
 AC is the 3 age classes of black bears (sub-adult age class=1.5–3yrs, adult age-class = 3.5–6.5yrs, 

older adult age-class ≥ 7yrs). 
j
 Hog kill (HK) is the number of hogs killed by park personnel for wild hog management. 
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Table 8. Parameter estimates of δ
13

C stable isotopes using model averaging for hair 

collected from black bears live-trapped in Great Smoky Mountains National Park, 

Tennessee, USA, 

1980–2001. 

Variable 

Model Averaged 

Parameter 

Estimate 

Unconditional 

Standard 

Error 

95% LCL 95%UCL 

Intercept -22.30 0.19 -23..57 -22.83 

Adult bears (3.5–6.5yrs) 0.0009 0.02 -0.05 0.05 

Old Adult Bears (≥7yrs) 0.01 0.06 -0.11 0.12 

Year 0.0006 0.01 -0.02 0.02 

Total Hard Mast Index
a
 0.01 0.03 -0.06 0.07 

Males 0.002 0.02 -0.04 0.05 

Weight Class 1
b
 0.42 0.18 0.06 0.78 

Weight Class 2
b
 0.76 0.24 0.28 1.23 

Nuisance Status
c
 0.01 0.11 -0.21 0.23 

Hog Kill
d
 0.000005 0.0001 -0.0003 0.0003 

White Oak Index
e
 0.04 0.06 -0.08 0.16 

Red Oak Index
e
 -0.01 0.05 -0.11 0.08 

a 
Total hard mast index for GSMNP as calculated by Greenberg and Warburton (2007). 

b
  Weight classes were calculated using weight recorded for all bears captured during the study period based 

on a normal distribution with 95% confidence intervals for each age and sex categories;  

 weight class 0=low-weight, weight class 1=average-weight, and weight class 2=above- average weight. 
c
  Nuisance status refers to research bears that subsequently were captured or removed from campgrounds or 

picnic  areas of GSMNP. 
d
  Hog kill is the number of hogs killed by park personnel for wild hog management. 

e
 White oak index and red oak index for GSMNP and as calculated by Greenberg and Warburton (2007). 
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Table 9. Model selection based on second-order Akaike’s Information Criteria (AICc) to 

evaluate stable nitrogen isotope delta  (δ
15

N) values of hair collected from black bears live-

trapped in Great Smoky Mountains National Park, Tennessee, USA, 1980–2001. 

Model 

No. 

Models for δ
15

N Stable Isotpe 

Values 
RSS K

a
 AICc ∆AICc

b
 wi

c
 

Evidence 

Ratio 

M16 γ = ß0 + ß1(AC)
d
 + ß2(WOI)

e
 + ε 76.498 4 -41.357 0.000 0.732 1 

M14 γ = ß0 + ß1(WOI) + ε 81.411 2 -38.327 3.030 0.161 4.549746 

M17 γ = ß0 + ß1(WC)
f
 + ß2(WOI) + ε 80.349 4 -35.611 5.746 0.041 17.68639 

M7 γ = ß0 + ß1(AC) + ß2(HMI)
g
 + ε 81.351 4 -34.161 7.196 0.020 36.5218 

M1 γ = ß0 + ß1(AC) + ε 83.709 3 -32.962 8.395 0.011 66.50982 

M3 γ =ß0 + ß1(HMI) + ε 86.037 2 -31.860 9.497 0.006 115.3841 

M11 γ = ß0 + ß1(AC) + ß2(HK)
h
 + ε 83.472 4 -31.150 10.207 0.004 164.5728 

M18 γ = ß0 + ß1(AC) + ß2(ROI)
i
 + ε 83.652 4 -30.898 10.459 0.004 186.700 

M5 γ = ß0 + ß1(SEX) + ß2(AC) + ε 83.702 4 -30.828 10.529 0.004 193.3277 

M9 γ = ß0 + ß1(WC) + ε 85.778 3 -30.105 11.252 0.003 277.481 

M10 γ = ß0 + ß1(WC) + ß2(HMI) + ε 84.390 4 -29.869 11.487 0.002 312.2224 

M2 γ = ß0 + ß1(YEAR) + ε 83.253 5 -29.503 11.853 0.002 374.9061 

M8 γ = ß0 + ß1(SEX) + ß2(AC) + ß3(YEAR) + ε 87.788 2 -29.273 12.084 0.002 420.6889 

M12 γ =ß0 + ß1(HK) + ε 87.990 2 -29.233 12.123 0.002 429.0707 

M15 γ = ß0 + ß1(ROI) + ε 88.299 2 -28.824 12.532 0.001 526.4707 

M13 γ = ß0 + ß1(NS)
j
+ ε 88.330 2 -28.783 12.574 0.001 537.4574 

M4 γ =ß0 + ß1(SEX) +  ε 88.371 2 -28.729 12.628 0.001 552.1565 

M19 γ = ß0 + ß1(WC) + ß2(ROI) + ε 85.776 4 -27.963 13.393 0.001 809.677 

M6 γ = ß0 + ß1(SEX) + ß2(YEAR) + ε 87.787 3 -27.397 13.960 0.001 1074.974 

a 
Number of parameters plus 1 for intercept. 

b
  Relative difference between AICc of model and AICc of model with lowest AICc. 

c
  Model weight. 

d
  AC is the 3 age classes of black bears (sub-adult age class=1.5–3yrs, adult age-class = 3.5–6.5yrs, older 

adult age-class ≥ 7yrs). 
e
 WOI is the white oak index for GSMNP as calculated by Greenberg and Warburton (2007). 

f
 WC (weight class) Weight classes were calculated using weight recorded for all bears captured during the 

study period based on a normal distribution with 95% confidence intervals for each age and sex 

categories; low-weight, average-weight, and above- average weight.   
g
 HMI is the total hard mast index for GSMNP as calculated by Greenberg and Warburton (2007).NS are 

research bears that subsequently were captured or removed from campgrounds or picnic areas of GSMNP. 
h
 Hog kill (HK) is the number of hogs killed by park personnel for wild hog management. 

i
 AC is the 3 age classes of black bears (sub-adult age class=1.5–3yrs, adult age-class = 3.5–6.5yrs, older 

adult age-class ≥ 7yrs). 
j
 NS are research bears that subsequently were captured or removed from campgrounds or picnic areas of 

GSMNP. 
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Table 10. Parameter estimates of δ
15

N stable isotopes using model averaging for hair 

collected from black bears live-trapped in Great Smoky Mountains National Park, 

Tennessee, USA, 

1980–2001. 

Variable 

Model Averaged 

Parameter 

Estimate 

Unconditional 

Standard 

Error 

95% LCL 95%UCL 

Intercept 2.91 0.20 2.52 3.30 

Adult bears (3.5–6.5yrs) -0.03 0.16 -0.35 0.30 

Old Adult Bears (≥7yrs) -0.36 0.25 -0.85 0.14 

Year -0.00005 0.0008 -0.002 0.001 

Total Hard Mast Index
a
 -0.005 0.03 -0.05 0.05 

Males -0.00008 0.001 -0.002 0.002 

Weight Class 1
b
 -0.004 0.02 -0.04 0.03 

Weight Class 2
b
 -0.01 0.06 -0.13 0.10 

Nuisance Status
c
 -0.0001 0.003 -0.01 0.01 

Hog Kill
d
 0.00005 0.0007 -0.001 0.001 

White Oak Index
e
 -0.19 0.08 -0.34 -0.03 

Red Oak Index
e
 -0.0001 0.006 -0.01 0.01 

a 
Total hard mast index for GSMNP as calculated by Greenberg and Warburton (2007). 

b
  Weight classes were calculated using weight recorded for all bears captured during the study period based 

on a normal distribution with 95% confidence intervals for each age and sex categories;  

 weight class 0=low-weight, weight class 1=average-weight, and weight class 2=above- average weight. 
c
  Nuisance status refers to research bears that subsequently were captured or removed from campgrounds or 

picnic areas of GSMNP. 
d
  Hog kill is the number of hogs killed by park personnel for wild hog management. 

e
  White oak index and red oak index for GSMNP and as calculated by Greenberg and Warburton (2007). 
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APPENDIX B: FIGURES 



Figure 1. Study area map, Great Smoky Mountains National Park, Tennessee, USA. 
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Figure 2A. δ
13

C and δ
15

N values from reference bear samples corrected for metabolic 

fractionation
e
. 

 

a Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

b Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

c Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

d GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

e A correction factor value of 2‰ was applied for carbon and 3‰ for nitrogen. 
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Figure 2B. δ
13

C and δ
15

N values from reference bear samples corrected for metabolic 

fractionation
f
.  

 

a Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

b The Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

c Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

d GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

e Hair samples were collected as part of project examining black bear predation on elk calves  

 (Yarkovich 2009) and donated by Joe Yarkovich of Great Smoky Mountains National Park, North 

Carolina, USA 
f
 A correction factor value of 2‰ was applied for carbon and 3‰ for nitrogen.
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Figure 3A. δ
13

C  values of all samples analyzed not corrected for metabolic fractionation 

to evaluate food habits of bears live-trapped in Great Smoky Mountains National Park, 

Tennessee, USA, 1980–2001.  

 

 

a Research black bear hair samples for this project collected from Great Smoky Mountains National Park, 

Tennessee, USA, 1980–2001. 

b Hair samples from elk relocation project Cataloochee Valley, Great Smoky Mountains National Park, 

North Carolina, USA, (Yarkovich 2009) donated by Joe Yarkovich, National Park Service. 

c Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

d Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

e GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

f Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

g Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.) 

h Values taken from Jahren and Kraft (2008). 

i Values taken from Jahren et al. (2006).  
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Figure 3B. δ
15

N stable isotope values of all samples analyzed not corrected for metabolic 

fractionation to evaluate food habits of bears live-trapped in Great Smoky Mountains 

National Park, Tennessee, USA, 1980–2001.  

 

 

a Research black bear hair samples for this project collected from Great Smoky Mountains National Park, 

Tennessee, USA, 1980–2001. 

b Hair samples from elk relocation project Cataloochee Valley, Great Smoky Mountains National Park, 

North Carolina, USA, (Yarkovich 2009) donated by Joe Yarkovich, National Park Service. 

c Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

d Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

e GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

f Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

g Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.) 

h Values taken from Jahren and Kraft (2008). 
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Figure 4A. δ
13

C stable isotope values of all samples analyzed and corrected for metabolic 

fractionation
j
 to evaluate food habits of bears live-trapped in Great Smoky Mountains 

National Park, Tennessee, USA, 1980–2001.  

 

a Research black bear hair samples for this project collected from Great Smoky Mountains National Park, 

Tennessee, USA, 1980–2001. 

b Hair samples from elk relocation project Cataloochee Valley, Great Smoky Mountains National Park, 

North Carolina, USA, (Yarkovich 2009) donated by Joe Yarkovich, National Park Service. 

c Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

d Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

e GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

f Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

g Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.) 

h Values taken from Jahren and Kraft (2008). 

i Values taken from Jahren et al. (2006).  
j A correction factor value of 2‰ was applied for carbon and 3‰ for nitrogen. 
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Figure 4B. δ
15

N stable isotope values of all samples analyzed and corrected for metabolic 

fractionation
i
 to evaluate food habits of bears live-trapped in Great Smoky Mountains 

National Park, Tennessee, USA, 1980–2001.  

 

a Research black bear hair samples for this project collected from Great Smoky Mountains National Park, 

Tennessee, USA, 1980–2001. 

b Hair samples from elk relocation project Cataloochee Valley, Great Smoky Mountains National Park, 

North Carolina, USA, (Yarkovich 2009) donated by Joe Yarkovich, National Park Service. 

c Knoxville zoo bear hair sample was donated by Dr. Ed Ramsey, University of Tennessee, College of 

Veterinary Medicine, Knoxville, Tennessee, USA. 

d Hair samples from Gatlinburg nuisance bears were donated by Dave Brandenburg from Tennessee 

Wildlife Resources Agency, Tennessee, USA. 

e GSMNP nuisance bear hair samples were donated by Bill Stiver of Great Smoky Mountains National 

Park, Tennessee, USA. 

f Orphaned cub and Appalachian Bear Rescue hair samples were donated by Lisa Stewart from 

Appalachian Bear Rescue, Townsend, Tennessee, USA. 

g Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.) 

h Values taken from Jahren and Kraft (2008). 
i
 A correction factor value of 2‰ was applied for carbon and 3‰ for nitrogen. 
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Figure 5. Mean δ
13

C values for natural foods
a
 and hair samples collected from live-

trapped bears from Great Smoky Mountains National Park, Tennessee, USA, 1980–2001.  

 

a Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.).  
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Figure 6. Mean δ
15

N values for natural foods
a
 and hair samples collected from live-

trapped bears from Great Smoky Mountains National Park, Tennessee, USA, 1980–2001.  

 

a Natural food items included; red oak acorns (Quercus spp.), white oak acorns (Quercus spp.), blueberry 

(Vaccinium spp.), huckleberry (Galussacia sp.) and wild grape (Vitis spp.). 
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Figure 7. Mean δ
13

C values of research bears by year, Great Smoky Mountains National Park, Tennessee, USA, 1980–2001.  
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Figure 8. Total hard mast index values (Greenberg and Warburton 2007)
a
 and mean δ

15
N values of research bears by year, 

Great Smoky Mountains National Park, Tennessee, USA, 1980–2001.  

 

 
a
 Visual surveys are used to determine the availability and distribution of mast (Whitehead 1969).  The crown of each tree is surveyed 

 estimating the percent of visible crown with mast.  Indices were calculated as: 

 100PBA PBA PBA
standard year max

 
  

 
 where PBA is the proportion of trees bearing acorns. 

 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0

2

4

6

δ
1

5
N

it
ro

g
en

H
a
rd

 M
a
st

 I
n

d
ex

Year

Total Hard 
Mast Index

Nitrogen



 

80 
 

Vita 

 Jennapher Teunissen van Manen was born in Salinas, California on 20 February 

1970.  She spent her childhood and teenage years camping with her family in the amazing 

landscapes of northern California.  She graduated from Oakmont High School, Roseville, 

California in 1988 and did not begin her college career until 2000 when she decided to 

return to school for a degree in wildlife ecology. She worked at California Department of 

Fish and Game from 2000 to 2007 in the Wildlife Programs Branch and attended classes 

at American River College in the evenings until she was admitted to the University of 

California, Davis in 2004.  In 2007, she graduated from UC Davis with a Bachelor of 

Science in Wildlife, Fish and Conservation Biology specializing in Physiological 

Ecology.  In the fall of 2007, she married Frank Teunissen van Manen and moved to 

Maryville, Tennessee in December, 2007.  She started a master’s program at The 

University of Tennessee in the fall of 2008 under Dr. Lisa Muller and received her 

Master of Science degree in Wildlife and Fisheries Science and minor in Statistics under 

Dr. Arnold Saxton in May 2011.   

 


